ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRICAL AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
NONLINEAR CONTROL	ECE-576	FALL-SPRING	3 + 0	3	10

Prerequisite Courses none

Туре	Elective			
Language	nglish			
Coordinator	Assist. Prof. Dr. Günyaz Ablay			
Instructor	Assist. Prof. Dr. Günyaz Ablay			
Adjunct	none			
Aim	Learning, understanding and applying nonlinear control design tools that are needed in control engineering studies.			
Learning Outcomes	To give an opportunity to students for learning the fundamentals of nonlinear systems learning the stability theorems learning nonlinear control design with feedback linearization learning robust control design methods learning integral control, gain scheduling and sliding mode control tools learning software tools that can be used for analysis and design of nonlinear systems			
Course Content	 Review of Linear Control Systems Introduction to Nonlinear Systems Second and Higher Order Systems Input-State and Input-Output stability Nonlinear Forms Stabilization with Feedback Control Robust Stabilization with Feedback Control Tracking with feedback control Observers for State-Feedback Control Integral Control Passivity 			

WEEKLY T	WEEKLY TOPICS AND PRELIMINARY STUDY						
Week	Торіс	Preliminary Study					
1	 Review of Linear Control Systems PID controller, State feedback control, DC motor experiment 	The relevant lecture notes					
2	Introduction to Nonlinear SystemsNonlinear models, Examples	The relevant lecture notes					
3	 Second and Higher Order Systems Phase portraits, Multiple equilibria, Limit cycles, Bifurcation 	The relevant lecture notes					
4	 Stability of Equilibrium Points Basics & linearization, Lyapunov's method, Invariance principle, Exponential stability and Region of Attraction, Time varying systems, Perturbed systems 	The relevant lecture notes					
5	 Input-State and Input-Output stability Ultimate boundedness, Input-to-state stability, Input-output stability, L2 gain and small gain theorem 	The relevant lecture notes					
6	 Nonlinear Forms Normal form, Controller form, Observer form, Output feedback and Strict feedback forms 	The relevant lecture notes					
7	 Stabilization with Feedback Control Concepts and Linearization, Feedback linearization, Cascaded systems, Backstepping, Passivity-based control, Control Lyapunov functions, Output feedback 	The relevant lecture notes					
8	Midterm						
9	 Robust Stabilization with Feedback Control Sliding-mode control, Lyapunov redesign, Backstepping 	The relevant lecture notes					

10	 Tracking with feedback control Feedback linearization, Sliding Mode Control (SMC), Point-to-point transition 	The relevant lecture notes
11	 Observers for State-Feedback Control Linearization and linear observers, Extended Kalman Filter (EKF), Exact Observers, High-gain observers 	The relevant lecture notes
12	Integral ControlLinearization based integral control, Integral SMC	The relevant lecture notes
13	 Passivity Memoryless functions and State models, Positive real transfer functions, Feedback systems, Circle and Popov Criteria 	The relevant lecture notes
14	Final Exam	

SOURCES				
Lecture Notes	Lecture notes and slides			
Oth or Common	Course Textbook: Hassan K. Khalil, Nonlinear Systems, Prentice Hall, 2013. Additional Materials:			
Other Sources	 J.J. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991 H.J. Marquez, Nonlinear Control Systems, John Wiley & Sons, 2003 			

COURSE MATERIALS SHARING		
Documents	Lecture notes, slides and papers	
Homework	Students will be given one homework each week	
Exams	1 Midterm and 1 Final Exam	

EVALUATION SYSTEM					
SEMESTER STUDY	NUMBER	CONTRIBUTION			
Midterm	1	20			
Homework	14	25			
Quiz	14	25			
SUB-TOTAL		70			
Contribution of Semester Study		70			
Contribution of Final Exam	1	30			
TOTAL		100			

Course Category				
Sciences and Mathematics	30%			
Engineering	70%			
Social Sciences	0%			

No		Co	Contribution Level				
	Program Qualifications		2	3	4	5	
1	The skills of using mathematics, science and engineering information in advanced research,					x	
2	The skills of analyzing, designing and/or implementing an original system that will be able to solve an engineering problem,					x	
3	The skills of using the required software, hardware and modern measurement equipment in their field of research,					x	
4	The skills of planning independent research and implementing in detail,					x	
5	The skills of following literature, listening to and making technical presentation, writing a paper in academic level,					х	
6	The skills of innovative and interrogative thinking and finding original solutions					х	

^{*}Increasing from 1 to 5.

ECTS / WORK LOAD TABLE					
Activities	Number	Duration (Hours)	Total Work Load		
Course Length (includes exam weeks: 16x total course hours)	14	3	42		
Out-of-class Study Time (Pre-study, practice)	14	4	56		
Internet search, library work, literature search	14	5	70		
Presentation	1	5	5		
Homework	14	5	70		
Midterm	1	27	27		
Final Exam	1	30	30		
Total Work Load			300		
Total Work Load / 30			300/30		
Course ECTS Credit			10		